Making and breaking security
in embedded devices

Yashin Mehaboobe
SDR Engineer, Bastille Networks

)

o — — .

-

Hwhoami

e Security enthusiast
* SDR Engineer @ Bastille Networks
e Hardware tinkerer

e Speaker: CoCon 2013, Nullcon V, HITB Amsterdam and Kaspersky
Cyberconference

e Organiser, Defcon Kerala

twitter.com/YashinMehaboobe
github.com/sp3ctr3
http://www.linkedin.com/pub/yashin-mehaboobe/38/a2/367

Why embedded?

Large numbers
Critical infrastructure dependent on embedded devices
Network devices (both enterprise and SOHO)

Even if it’s not critical:
e Botnetfodder
* Pivoting
 Storage for the bad guys

On the internet and unsecured (Mostly)

But.... .why?!

* REPRODUCTION:
* Understand how the product works by reverse engineering it

 Build a similar product

° $3458Profits$$54554
* FREE STUFF!:

e Bypassrestrictions

e Get premium services

e UNLOCKING FEATURES:
e Ex:Install dd-wrt

e Don’t have to pay extra

But.... .why?!

* ACCESS TO OTHERWISE SECURE NETWORKS

* No one expects the embedded inquisition!

¢ SOHO/Enterprise routers are not audited most times

* No one checks the firmware

TOOLS OF THE TRADE

Choose yo ap

A word about equipment

Good equipment = $$5$
Use open source equipment such as the bus pirate, hackRF, OpenBench etc...

Commercial tools work better in most of the cases

e Would be a good investment

Have at least one each of the separate categories of tools

Logic Analyzer

RF Spectrum Analyzer
Oscilloscope

JTAG debugger

LOGIC ANALYZERS

* Monitor communication

Decode protocols

Replay (in some cases)

Cheap (445% to 5005++)

* Open source ones:
e Open Bench

* Bus Pirate

ELﬂgicEniﬁer-‘l@chﬂvaiﬂlt 7
File Edit Devi Diagram Tools Help

1

10.000 ps

| | 1 1 1 | | 1 | 1 | 1 | | | | 1 | | | | 1 1 |

Sekup read from slave: 0x1FF

RF Analysis tools

For scanning the RF frequencies

Recognizing signals

Storing and replay

SDRs are your friends!

Example:

* RFExplorer

* RTL-SDR

* HackRF/BladeRF/USRP

Oscilloscope

* Digital/Analog
 Useful for noting timing

 Can also help in recognition of
communication protocol

e Very much needed

Aol

| [10Dl s Dol Fis] FREGH [
o] B R L ™

1=

U U v V
.' - 'r U1 -02= &30 [J1= 1.5 B

3 .

| = €y
[v
e
\/ 4 f
S e)

& L

Debug Ports

Debug ports FTW

 Ports setup to allow developer/engineer access during testing/repairing
* Loved by hackers because of the access it provides

» Different types:
* JTAG
e Serial
e LPC (Xbox/TPM)

* Allow access to boot messages

* Allows you to log in without authentication

* Sometimes you can even du

Debug ports identification

1. ldentify the ports

2. Connect the debugger/communication device

3. Profit!

First step is the most complex

Methodology varies from protocol to protocol

Number of points is a good indication

Identifying Serial ports

Serial has 4 lines:
Y/ dd

e Ground

* Rx

* Tx

Identify ground pin with a multimeter continuity test

Find vcc by powering up and checking vcc + ground with multimeter
Tx will be the pin with high activity

Rx will be the other

Identify baudrate by trial and error

JTAGulator has support for serial

JTAG ports W

Joint Test Action Group
Used for debugging, updating firmware etc...
Running homebrew on Xbox

Dumping firmware

Fo,

Use JTAGulator for finding JTAG ports

OpenOCD has support for a large number of JTAG : 2%
debuggers A%

Defending against debug port attacks

Disable unneeded ports

Use authentication for the debug ports

Shell access should not be given without authentication

Unfortunately these defenses may not be practical in some cases

Electronic bus attacks

SPI,UART and I2C

e SPI, UART and I2c are some of the more commonly used protocols in embedded
devices

* There is no authentication or authorization
e |tis trivial to sniff traffic
* Very easy to replay attacks

e Bus pirate would be a good tool

* Hardware hackers swiss army knife

» Developed by Dangerous Prototypes

Radio communication

Sniffing radio signals

e Use to be hard and expensive

With the arrival of SDRs the situation changed

e Now you can RX and TX with hardware ranging from 20$ RTL SDR to 1000%
devices

Most signals aren’t encrypted

Some rely on FHSS (Not a good idea)

Tools used

e For most radio communication attacks an SDR would suffice
* Mainly because they can TX and RX in a wide range of frequencies

e Some examples are
USRP B210
HackRF

BladeRF

RTLSDR

* You can also use RFCat (cc1111 based attack toolkit)

» Ubertooth One can be used for Bluetooth sniffing

* OR sniff the buses of the transmitter

RF attacks

* Jamming
e Basically DoS at RF level
* Decreases SNR
e Techniques differ

e Some even disrupt handshakes

e Replay
* Capture signal
e Storeit

e Replay at some other time

Defenses against RF attacks

e FHSS s effective against jamming
* Use of encryption will defeat most sniffing attacks

e Encryptionis built into most transmitters

Unfortunately it is not used as much as it should be

Rolling code system is a good defense against replay attack

Flash memory forensics

Flash memory

* Nonvolatile
e Used to store data
e Firmware is usually stored in flash memory

e Usually uses SPI for communication

e Usually does not have any protection

Extracting data from flash memory

* |Incircuit:
e Don’tremove the chip

e Use a chip programmer or bus pirate to read data

* Desoldering
* The chip should be removed by desoldering it.

* Itis then accessed using a chip programmer to get the data

* Firmware can be extracted in this manner

Defenses against Flash memory
forensics

e OTP memory protection bits
e Doesn’tallow the modification of flash memory

* Only useful against modification attacks

* Encryption

 Storing the firmware/data encrypted would defeat memory forensics

 Also not storing confidential info on the chip

Firmware/Code Analysis

(In)Security

Code is outdated in most devices
Routers are the worst transgressors
Most are internet facing

Have more vulns than a CTF challenge

Code is available for us to check and find vulns

Firmware

Almost always linux

Bootloader is usually Uboot

Serial output usually gives you hints about the device
Some may be obfuscated

Can be obtained by either:
e JTAGdump
e Flash dump via Serial

 Flash dump via chip desoldering

e From the company website

Analysing firmware

» Usually various sections wrapped into one bin file

* You can use dd to separate

Best option is to use binwalk

Binwalk is a tool by Craig (of devttyso blog(great resource for hw reversing))

Automatically analyze and extract firmware files

M ™ & sp3ckr3@fortress: ~/work/firm
sp3ctr3@fortress:~/work/firm$ binwalk -e FW_WRT1900AC_1.1.8.161917 prod.img

DECIMAL HEX DESCRIPTION

G] 0x0 uImage header, header size: 64 bytes, header CRC
: BXE821DB99, created: Sat Jun 21 03:20:04 2014, image size: 3856032 bytes, Data
Address: ©x8000, Entry Point: ©x8000, data CRC: OxAF@63DF8, 0S5: Linux, CPU: ARM
, image type: 0S5 Kernel Image, compression type: none, image name: Linux-3.2.40

16579 0x40C3 gzip compressed data, from Unix, NULL date: Thu
Jan 1 ©5:30:00 1970, max compression
39321660 Ox3C0000 JFFs2 filesystem, little endian

sp3ctr3@fortress:~/work/firm$ 1s

3C0000.jffs2 48C3 FW_WRT1900AC_1.1.8.161917 prod.img
sp3ctr3@fortress:~/work/firm$ 1s -1

total 54732

-TW-rw-r-- 1 sp3ctr3 sp3ctr3 22151424 Aug 22 10:36 3C0000.jffs2

-TW-rW-r-- 1 sp3ctr3 sp3ctr3 7764900 Aug 22 10:36 40C3

-rw-rw-r-- 1 sp3ctr3 sp3ctr3 26083584 Aug 22 10:31 FW_WRT1900AC_1.1.8.161917 pro
d.img

sp3ctr3@fortress:~/work/firms

Defenses

e Review your code!

e Obfuscate your firmware

e Review your code again!

Invasive attacks

Invasion of chips

* Pretty easy to notice

Chips will be desoldered and/or destroyed in the process

Processors are mapped using microscopes

Very complicated attacks

Usually done for replication of chips

Resources

Stuff that helped me and may help you

Blogs

http://www.devttyso.com/

http://www.bunniestudios.com/

http://travisgoodspeed.blogspot.com

http://www.grandideastudio.com/

S '

e

Questions?

-

